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In recent years, nanotechnology has assumed an important role 
due to its extraordinary characteristics, already completely 
revealed or not yet fully studied. Researchers are continuously 
applying the basic ideas of nanotechnology in several �elds, 
including medicine, biology and engineering, to improve the 
existing applications in a wide range of devices, ranging from 
transistors to micro-motors and to biological probes. However, 
conducting experimental and numerical studies at the 
nanoscale presents numerous challenges, including high 
economic costs associated with resonant spectroscopy and 
signi�cant computational e�ort required for molecular 
dynamics simulations.

 One possible way to reduce these di�culties is to employ 
classical continuum mechanics theories. However, these 
theories fail to accurately simulate the actual behavior of 
materials at the small scale. Indeed, the mechanical response of 
nano-structures is very di�erent from the one of 
macro-structures due to dimensional e�ects, which do not 
manifest themselves at macro-structure level and are related to 
the inherent discrete nature of nanomaterials.

 �e �rst important dimensional e�ect at the nanoscale is 
surface stresses, see the fundamental studies of Gurtin and 
Murdoch [1,2]. In nanostructures presenting very high 
surface-to-volume ratio, the elastic behavior of the material on 
the external surface is di�erent from the one of the materials 
within the mass of the structure due to elevated surface stresses. 
To incorporate the e�ect of the surface stresses into continuum 
mechanics equations, Gurtin and Murdoch proposed an 
advanced theory of elasticity known as the “theory of surface 
elasticity”.

 A second important dimensional e�ect at the nanoscale is 
strain gradients, as initially investigated by Mindlin RD [3,4]. 
Strain gradient theory a�rms that materials should be modelled 
as collections of atoms, each one with its speci�c small-scale 
deformation mechanism, and therefore in the stress-strain 
relationships the related strain gradient terms must be added. 

 To this aim, in order to include the e�ect of the strain 
gradients vwithin the continuum mechanics equations, Mindlin 
developed a new theory of elasticity known as the “theory of 
elasticity gradient”.

 �e third and last important dimensional e�ect at the 
nanoscale is nonlocal elasticity, see the relevant studies of A.C. 
Eringen [5,6]. In classical continuum mechanics models, the 
stress state at a speci�c point of a body depends on the strain 
state only at that point and not at the other points, thereby 
lacking dimensional dependence. However, at the nanoscale, 
the microstructure of the material, including the distances and 

con�gurations between atoms within the discrete lattice, 
becomes crucial. �erefore, the actual discrete structure of 
nanomaterials cannot be homogenized into a classical local 
elastic continuum, necessitating the adoption of Eringen’s 
“theory of nonlocal elasticity”.

 Using classical continuum mechanics theories to model 
the mechanical behavior of nanostructures can give some 
additional problems beyond the previously described size 
e�ects.

 For example, in the case of carbon nanotubes, their 
e�ective discrete structure can be modelled by means of a 
continuous thin cylindrical shell if equivalent parameters, i.e., 
Young’s modulus, Poisson’s ratio, and wall thickness, are 
properly considered. �e choice of these equivalent 
parameters for the continuous modelling of the actual discrete 
nanostructures has been addressed in di�erent ways in the 
literature. A reliable methodology appears to be the one 
adopted by Yakobson, who obtained the equivalent values of 
the �exural sti�ness, tensile sti�ness, and Poisson’s ratio of the 
continuous shells comparing them with the values of strain 
energy obtained via molecular dynamics simulations [7]. 
Consequently, the equivalent values of Young’s modulus and 
wall thickness were obtained by means of the equations of the 
tensile and �exural rigidity from the classical continuum 
elastic shell theory. It should be stressed that molecular 
dynamics simulations were adopted to investigate the 
deformation behavior in the study of Yakobson because this 
method can study and de�ne the inherent properties of 
materials at a microstructural level that cannot be properly 
characterized by means of macroscopic experiments, like 
resonant Raman spectroscopy.

 Another very relevant issue in the modelling of 
nanostructures is related to their intrinsic anisotropy. 
Actually, in order to properly simulate the mechanical 
behavior of nanomaterials, it is essential to set an anisotropic 
model able to describe the dependence of the main elastic 
properties on dimensions and con�gurations. For instance, 
Chang [8,9] proposed an anisotropic elastic shell model 
reporting the expressions of �ve peculiar elastic properties of 
single-walled carbon nanotubes, i.e., longitudinal Young’s 
modulus and Poisson’s ratio, circumferential Young’s modulus 
and Poisson’s ratio, and also longitudinal shear modulus, as a 
function of carbon nanotube radius and chirality indices, and 
showed the correctness of this anisotropic elastic model by 
means of comparisons with molecular dynamics simulations. 
In particular, he demonstrated that the relationship between 
Young’s modulus and shear modulus of the isotropic elastic 

continuum mechanics theory is not yet retained in the case of 
single-walled carbon nanotubes. It must be underlined that 
also the study of Chang is based on a molecular mechanics 
model, called the “stick-spiral model”, in which the total 
potential energy of the nanostructure is a sum of di�erent 
bond energy contributions: another time it is observed that 
molecular dynamics represents an essential tool to properly 
simulate the actual discrete behavior of the nanomaterials via 
continuous elastic models.

 �e last relevant issue is related to the computational 
e�ort in modelling the dynamic behavior of nanostructures. 
Nanomaterials possess extremely high natural frequencies (in 
the order of THz) and in�nitesimal dimensions (in the order 
of nanometres). �ese properties, on one hand allow 
nanostructures to be properly adopted in advanced 
nano-electro-mechanical systems but, on the other hand, they 
can bring relevant numerical di�culties to the mathematical 
procedures if the governing equations are not 
nondimensionalized. Let us consider again carbon nanotubes: 
the displacement �eld can be nondimensionalized if divided 
by means of the carbon nanotube radius, and the time can be 
nondimensionalized by using a reference natural frequency, 
for example, the fundamental (lower) natural frequency of a 
circular ring under radial external force without 
circumferential inertia [10].

 As a conclusion, to accurately study the vibrations of 
nanostructures, which exhibit extremely small dimensions 
and high natural frequencies, it is crucial to properly 
incorporate their inherent size e�ects into dimensionless 
constitutive equations that are the basis of innovative 

advanced anisotropic elastic models considering equivalent 
continuous geometric and material parameters. 
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